

Dark photon dark matter from flattened axion potentials

Hong-Yi Zhang
Tsung-Dao Lee Institute, Shanghai Jiao Tong University
https://hongyi18.github.io

@ TAUP2025, Xichang Aug 25, 2025

Mainly based on arXiv 2507.20484, with collaborators

Paola Arias

Andrew Cheek Enrico Schiappacasse Luca Visinelli

Luca Visinelli Leszek Roszkowski

Dark matter landscape

How to produce axions?

Preinflationary axions $f_{\phi} \gtrsim H_{\rm I}$

Misalignment mechanism Oscillation stars when $3H \simeq m_{\phi}$

Postinflationary axions

Random field values in each 1/H
Collapse of perturbations → axion miniclusters

How to produce dark photons?

Simple misalignment:

$$ho_X \propto X_i X^i \propto a^{-2}$$

 $ho_X \propto X_i X^i \propto a^{-2}$ Exponentially suppressed during inflation even for constant X_i !

Saved by adding nonminimal couplings \rightarrow UV problems Arias et al. (JCAP, 2012)

Gravitational production:

$$rac{\Omega_X}{\Omega_c} \sim \left(rac{m_X}{10^{-5} {
m eV}}
ight)^{1/2} \left(rac{H_{
m I}}{10^{14} {
m GeV}}
ight)^2$$

Works for $m_X \gtrsim 10^{-5} \text{eV}$ Graham et al. (PRD, 2016)

Coupling to axions:

$$rac{lpha}{4f_{\phi}}X_{\mu
u}\widetilde{X}^{\mu
u}$$

$$\ddot{X}_{\pm} + H\dot{X}_{\pm} + \left(\frac{k^2}{a^2} + m_X^2 \mp \frac{\alpha k}{af_{\phi}}\dot{\phi}\right)X_{\pm} = 0$$

(Quasi)periodicity → parametric resonance Negative sign → tachyonic instability

 $X_{\pm} \propto e^{\mu_k t}$

Parametric resonance

https://www.youtube.com/watch?v=MUJmKl7QfDU

Ways to enhance parametric/tachyonic instabilities

$$\ddot{X}_{\pm} + H\dot{X}_{\pm} + \left(\frac{k^2}{a^2} + m_X^2 \mp \frac{\alpha k}{af_{\phi}}\dot{\phi}\right)X_{\pm} = 0$$

Large coupling	Generic axions Agrawal et al. (PLB, 2019) Co et al. (PRD, 2019)	Minimal, works for QCD axions Low inflation scale is required α>40 is needed, nontrivial model building
Large field velocity	Axion rotation Co et al. (JHEP, 2021)	Naturally arises in several setups, e.g., supersymmetry Massless axions are assumed Disrupted by self-resonance for massive axions?
Delayed oscillation	Trapped axions Kitajima et al. (PRD, 2023)	Explicit PQ breaking, fine tuning for QCD axions Nontrivial model building Disrupted by axion self-resonance?
Large field amplitude	Flattened axion potentials HYZ et al. (2025, this talk)	Works for moderate coupling α~1 Naturally arises in multifield models/string theory Works for QCD axions if fine-tuned

Dark photon dark matter from flattened axion potentials

Instabilities of transverse dark photon modes

$$\ddot{X}_{\pm} + H\dot{X}_{\pm} + \left(\frac{k^2}{a^2} + m_X^2 \mp \frac{\alpha k}{a f_{\phi}}\dot{\phi}\right)X_{\pm} = 0$$

In flat spacetime: $X_{\pm} \propto e^{\mu_k t}$

In an expanding universe: efficient instabilities occur if $\text{Re}[\mu_k] > H$

Lattice simulations

Turn off axion self-resonance

Typically, $k_{\rm phys} \sim 0.2 m_{\phi}$

Spectrum is flatter if resonance remains efficient

Relic abundance

Time at onset of oscillations
$$\frac{\rho_X}{s} \sim \frac{m_X}{0.2m_\phi} r_X \frac{\rho_\phi}{s} \Big|_{H=H_{\rm osc}}$$

Redshift factor Fraction of transferred density For efficient dark photon production, $r_X \sim 1$

$$\Omega_X h^2 \sim 0.1 r_X \left(\frac{m_X}{0.1 m_\phi}\right) \left(\frac{m_\phi}{10^{-17} \text{eV}}\right)^{1/2} \left(\frac{f_\phi}{3 \times 10^{14} \text{GeV}}\right)^2 \left(\frac{4}{g_*(T_{\text{osc}})}\right)^{1/4} \left(\frac{0.01 m_\phi}{H_{\text{osc}}}\right)^{3/2}$$

Condition for
$$\frac{\Omega_X}{\Omega_X + \Omega_\phi} \gtrsim 10\%$$
 and parametric resonance: $\frac{m_X}{m_\phi} \sim \mathcal{O}(10^{-3}-1)$

Works for a vast range of dark photon mass!

Axion self-interactions → self-resonance & oscillon

$$\ddot{\delta\phi} + 3H\dot{\delta\phi} + \left[\frac{k^2}{a^2} + \partial_{\bar{\phi}}^2 V(\bar{\phi})\right]\delta\phi = 0$$

(Initial) curvature perturbations $\delta \phi \sim 10^{-5} \phi_0$ Vacuum fluctuations of dark photons $\delta X_{\pm} \ll \delta \phi$

Generic: attractor solutions
Nonlinear: field amplitude $\gtrsim f_{\phi}$ Stable: long-lived, small radiation
Localized: decoupled from expansion
Useful: local sources of dark photons

Dark photon production from oscillons

Dark photon production from oscillons

Resonance threshold: $\alpha \gtrsim 2$

Narrow resonance $\rightarrow k_{\rm phys} \simeq 0.5 m_{\phi}$

Constraining dark photon solitons from radio silence

Spiky profile around supermassive black holes $\rho_{\rm DM,sp} \propto r^{-\omega}$ Lower velocity + larger number density \to more mergers

Before major merger

Major merger

Parametric resonance

Detection

Constraining dark photon solitons from radio silence

Summary

- Dark photon dark matter from flattened axion potentials
 - Three key effects: large amplitudes, delayed oscillations, oscillon formation
 - Homogeneous axion mode → dark photons (broad resonance, only for large couplings)
 - Homogeneous axion mode → oscillons → dark photons
 - Isocurvature constraints can be naturally evaded
- Constraining dark photon dark matter with soliton mergers (Stay tuned!)

Why study ultralight dark matter?

Simple: one or a few new fields

Bounded: a few leading interactions

Generic: presence in many models

Kaleidoscopic: rich phenomenology

Accessible: relatively low experimental costs

$$n\lambda_{\rm dB}^3 \sim \left(\frac{40 \text{ eV}}{m}\right)^4 \sim 3 \times 10^{82} \left(\frac{10^{-19} \text{ eV}}{m}\right)^4$$

 $\lambda_{\rm dB} \sim 50 \ \mu \text{m} \left(\frac{40 \text{ eV}}{m}\right) \sim 0.6 \text{ pc} \left(\frac{10^{-19} \text{ eV}}{m}\right)$

Dark photon solitons

$$X_i \approx \sqrt{\frac{2}{m}} f(r) \begin{pmatrix} 0 \\ 0 \\ \cos(\omega t) \end{pmatrix}$$

Linearly polarized

$$X_i \approx \frac{1}{\sqrt{m}} f(r) \begin{pmatrix} \cos(\omega t) \\ \sin(\omega t) \\ 0 \end{pmatrix}$$

Circularly polarized

$$X_i \propto g(r)\cos(\omega t)\hat{\boldsymbol{r}}$$

Spherically symmetric (Solutions with a node)

Isocurvature perturbations and free-streaming lengths

CMB constraint:
$$\delta_{\rm iso} = \frac{\delta \rho_{\phi}}{\rho_{\phi}} \lesssim 9 \times 10^{-6}$$
 at $k_0 = 0.05 {\rm Mpc}^{-1}$

Inflationary isocurvature fluctuations: $\delta_{\rm iso} \sim \frac{nH_{\rm I}}{2\pi\phi_0}$ for $V(\phi) \propto \phi^n$

Suppressed if $n \rightarrow 0$

Lyman-
$$lpha$$
 constraint: $\lambda_{\mathrm{fs}} = \int_0^{z_{\mathrm{prod}}} \frac{v(z)}{H(z)} dz \lesssim 0.1 \mathrm{Mpc}$

Satisfied for
$$m_X \gtrsim 10^{-18} \text{eV}$$