

Ultralight dark matter: From small-scale structure to dynamic neutrino mass Hong-Yi Zhang Tsung-Dao Lee Institute, Shanghai Jiao Tong University <u>https://hongyi18.github.io/</u>

@ Università degli Studi di Salerno Jun 10, 2025

Evidence of dark matter

Velocity dispersion of galaxy clusters Galaxy rotation curves Gravitational lensing Bullet cluster Cosmic microwave background Large scale structure Baryon acoustic oscillations Type Ia supernovae, ...

How light could dark matter particles be?

Uncertainty principle $\Delta x \Delta p \geq \frac{\hbar}{2}$

$$m \gtrsim 4.8 \times 10^{-21} \text{eV} \left(\frac{10 \text{ km/s}}{v}\right) \left(\frac{0.02 \text{ kpc}}{\Delta x}\right)$$

Willman 1 (dSph, discovered in 2018

$$\lambda_{\rm dB} = 0.25 \,\,\rm kpc} \left(\frac{4.8 \times 10^{-21} \rm eV}{m}\right) \left(\frac{10 \,\,\rm km/s}{v}\right)$$

Figure from D. H. Weinberg et al. (PNAS, 2013)

If dark matter particles are fermions ...

Pauli exclusion principle $n = g \int \frac{d^3p}{(2\pi)^3} f \lesssim \frac{g}{(2\pi)^3} \frac{4\pi}{3} (mv)^3$

$$m \gtrsim 24 \text{ eV}\left(\frac{2}{g}\right)^{\frac{1}{4}} \left(\frac{\rho_{DM}}{0.4 \text{ GeV/cm}^3}\right)^{\frac{1}{4}} \left(\frac{200 \text{ km/s}}{v}\right)$$

Solar neighborhood

$$\lambda_{\rm dB} = 7.7 \times 10^{-5} \,\,\mathrm{m} \left(\frac{24 \,\,\mathrm{eV}}{m}\right) \left(\frac{200 \,\,\mathrm{km/s}}{v}\right)$$

Sextans Ursa Minor Draco Milky Way Sagittarius Carina LMC SMC Sculptor Fornax

Figure from D. H. Weinberg et al. (PNAS, 2013)

S. Tremaine & J. E. Gunn (PRL, 1979)

How heavy could dark matter "particles" be?

Too heavy dark matter ($\gg M_{\odot}$) \rightarrow Stellar heating

Dark matter mass landscape

Ultralight dark matter

► Large occupation number → Classical fields $n\lambda_{\rm dB}^3 \sim \left(\frac{40 \text{ eV}}{m}\right)^4 \sim 3 \times 10^{82} \left(\frac{10^{-19} \text{ eV}}{m}\right)^4$

$$\lambda_{\rm dB} \sim 50 \ \mu {\rm m} \left(\frac{40 \ {\rm eV}}{m}\right) \sim 0.6 \ {\rm pc} \left(\frac{10^{-19} \ {\rm eV}}{m}\right)$$

Wave dynamics, rich phenomenology Interference, Bose-Einstein condensation, polarization, modulation of standard model constants, etc.

Diversity of dark matter profiles

Strong lensing anomalies in HS 0810+2554

Big circles: Observed locations of a quasi-stellar object and two radio jets

Cross points: NFW profile

Points: 75 Gaussian realizations of fuzzy DM fluctuations

Final parsec problem

B. C. Bromley et al. (PRD, 2024) H. Koo et al. (PLB, 2024)

Mathematical prescriptions

$$i\partial_t \psi = -\frac{\nabla^2}{2ma^2}\psi + \frac{m}{a}\Phi\psi$$
$$\nabla^2 \Phi = \frac{1}{2M_{\rm P}^2}(\rho - \overline{\rho})$$
$$\rho = m|\psi|^2$$

Figure from H.-Y. Schive et al. (Nature Physics, 2014)

Nonrelativistic effective field theory

B. Salehian et al. (JHEP, 2020)B. Salehian, HYZ et al (JHEP, 2021)

Large- and small-scale structure

Wavelike dark matter

Solitons, cored profiles

Particlelike dark matter

NFW, cuspidal profiles

H.-Y. Schive et al. (Nature Physics, 2014)

Density profiles of ultralight dark matter halos Soliton core + NFW profile

H.-Y. Schive et al. (Nature Physics, 2014)

Solitons

$$\psi(t, \boldsymbol{x}) = f(r)e^{i\mu t}, \quad \mu \ll m$$
 $\phi(t, \boldsymbol{x}) \approx \sqrt{\frac{2}{m}}f(r)\cos(\omega t), \quad \omega = m - \mu$

Ground state of the SP equations

Soliton profile solver in Mathematica: DMSolitonFinder HYZ (JHEP, 2025)

Spin in vector solitons

 $\overline{\psi_i(t, \boldsymbol{x}, \sigma)} = f(r)e_i(\sigma)e^{i\mu t}$

$$e_i(0) = \begin{pmatrix} 0\\0\\1 \end{pmatrix} \quad , \quad e_i(\pm 1) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\\pm i\\0 \end{pmatrix}$$

Linearly polarized Circularly polarized

M. Jain & M. A. Amin (PRD, 2022) **HYZ**, M. Jain, and M. A. Amin (PRD, 2022)

Figure from M. A. Amin et al. (JCAP, 2022)

|s|

S

Vector solitons

Linearly polarized

 $X_i \approx \sqrt{\frac{2}{m}} f(r) \begin{pmatrix} 0 \\ 0 \\ \cos(\omega t) \end{pmatrix} \quad X_i \approx \frac{1}{\sqrt{m}} f(r) \begin{pmatrix} \cos(\omega t) \\ \sin(\omega t) \\ 0 \end{pmatrix}$

Circularly polarized

$X_i \propto g(r) \cos(\omega t) \hat{r}$

Spherically symmetric (Solutions with a node)

HYZ, M. Jain, and M. A. Amin (PRD, 2022)

Local dark matter density

 $\rho_{\rm local} \approx 0.4 {\rm GeV}/{\rm cm}^3$

M. Benito et al. (Phys.Dark Univ., 2021)

Stochastic fluctuations

Constant amplitude within a de Broglie time

G. P. Centers et al. (Nature Commun., 2021)

Highly random on long time scales

Rich phenomenology

Neutrino mass?

The standard model and neutrino mass

The standard model:
Minimal lepton sector
No right-handed neutrino
Massless neutrinos
Accidental lepton number symmetry

"for the discovery of neutrino oscillations, which shows that neutrinos have mass"

The seesaw mechanism

Mass matrix for ν_L, ν_R $\mathcal{M}_{\nu} = \begin{pmatrix} 0 & m_D \\ m_D & m_R \end{pmatrix}$ $\int m_D \ll m_R$ $m_l \simeq \frac{m_D^2}{m_R} , \quad m_h \simeq m_R$ $\mathcal{L} \supset -m_D \bar{\nu}_D \nu_D - \frac{1}{2} m_R \overline{\nu_M^c} \nu_M + h.c.$ $\nu_D = \nu_L + \nu_R , \quad \nu_M = \nu_R + \nu_R^c$ H ν_R ν_R u_L ν_L

Dynamic neutrino mass? Some motivations

Some tension in $\sum m_{\nu}$?

Redshift-dependent $\sum m_{\nu}$?

DESI Collaboration (JCAP, 2025)

C. S. Lorenz et al. (PRD, 2021)

Can DM explain m_{ν} ?

A specific realization of "dark" neutrino mass

 u, χ have zero bare mass

Cold gas of dark matter particles: $m_{\nu}^2 \propto \frac{\rho_{\phi}}{m_{\phi}^2} \frac{y(y-\epsilon)}{y^2-1}$ $y = \frac{2E_{\nu}m_{\phi}}{m_{\chi}^2}$ $\epsilon = \frac{n_{\phi} - \bar{n}_{\phi}}{n_{\phi} + \bar{n}_{\phi}}$ (Forward scattering) $m_{\nu}^2 \propto \frac{\rho_{\phi}}{m_{\phi}^2} \cos^2(m_{\phi}t)$ (Relevant to ultralight dark matter)

M. Sen and A. Y. Smirnov (JCAP, 2024)

Another realization of "dark" neutrino mass

If the Majorana mass is $m_R = g\phi_0 \cos(m_\phi t)$ in the seesaw

25

ryou

BUILD YOUR MODEL!

Testing the mass origin with supernova neutrinos

Galactic core-collapse supernovae rate ~O(1)/century S. M. Adams et al. (ApJ, 2013)

Arrival time delay effect is pronounced for:

- Large "dark" mass
- Supernovae near galactic center (even lower rate)

Neutrinos crossing galactic center

S.-F. Ge, C.-F. Kong, and A. Y. Smirnov (PRL, 2024)

Assuming NFW profile for dark matter, neglecting time dependence and density fluctuations

Tests with oscillation experiments?

For ultralight DM $10^{-19} \lesssim m_{\phi} \ll 10 \text{eV}$ $\Delta m_{ij}^2 \sim \Delta m_{ijD}^2(\boldsymbol{x}) \cos^2(m_{\phi}t)$ \uparrow \uparrow \uparrow DM density- Time dependent modulation

assuming relativistic neutrinos

Several time and length scales

Modulation period

$$T_{\phi} = \frac{\pi}{m_{\phi}} = 5.7 \mathrm{hr} \left(\frac{10^{-19} \mathrm{eV}}{m_{\phi}} \right)$$

 $T_{\rm exp} \gtrsim \mathcal{O}(10) {\rm days}$

Time scale for experiments

→ Time-averaged probabilities

Coherence length
$$\lambda_{dB} = 1.24 au \left(\frac{10^{-14} eV}{m_{\phi}}\right) \left(\frac{200 km/s}{v}\right)$$
Earth crossing distance $l_{\oplus} = 1.16 au \left(\frac{T_{exp}}{10 days}\right) \left(\frac{v_{\oplus}}{200 km/s}\right)$

 \rightarrow Space-averaged probabilities for $m_{\phi} \gg 10^{-14} \text{eV}$

Strategy

For $m_{\phi} \ll 10^{-14} \text{eV}$, constant m_{ν} : 1. Take time average 2. Compare with data

For $m_{\phi} \gg 10^{-14} \text{eV}$, varying m_{ν} : 1. Model DM density fluctuations 2. Take time + spatial average 3. Compare with data

Long-baseline reactor experiment: KamLAND

 $L_0 = 180 \text{km}$ (flux-weighted average baseline)

Located at 1km underground, Hida, Japan Detected antineutrinos from >50 reactors (before 2013) Sensitive to Δm_{21}^2 , θ_{12} , θ_{13}

KamLAND Collaboration (2013)

Chi-square analysis

"Dark 1" "Dark 2" Parameter Vacuum Dark $\Delta m_{21}^2 \times 10^{-5} \,\mathrm{eV}^2$ $8.00\substack{+0.15\\-0.15}$ $8.57\substack{+0.45 \\ -5.42}$ $\Delta m_{32}^2 \times 10^{-3} \,\mathrm{eV}^2$ $2.49^{+0.04}_{-0.04}$ $3.12^{+0.06}_{-0.05}$ $0.151\substack{+0.001\\-0.002}$ $0.204^{+0.002}_{-0.002}$ θ_{12} $0.58^{+0.02}_{-0.01}$ $0.61^{+0.02}_{-0.02}$ θ_{13} Blue color Green $\begin{array}{l} \Delta m^2_{32} \times 10^{-3} \, \left[{\rm eV}^2 \right] \\ \overset{\ell^2}{\circ} \, \overset{\ell^2}{\circ} \, \overset{\ell^2}{\circ} \, \overset{\ell^2}{\circ} \, \overset{\ell^2}{\circ} \, \end{array}$ 3.12 3.00 2:30 0.210 $\theta_{13}^{(0)}$ 0.165 0.150 0.68 $\theta_{12}^{0,0}$ 0,60 0,30 0.52 2.40 0.165 0.180 0.64 0.195 0.210 0.52 0,30 6 Ъ Ŷ 2:30 3.00 3.25 0,150 0.60 0.60

 $\Delta m_{32}^2 \times 10^{-3} \, \left[\mathrm{eV}^2 \right]$

 θ_{13}

 θ_{12}

 $\Delta m_{21}^2 \times 10^{-5} \, \left[\mathrm{eV}^2 \right]$

KamLAND (main dataset) + RENO + Double Chooz (short baseline experiments) + Solar θ12

Survival probabilities with best-fit parameters

"Dark" mass is disfavored at > 4σ .

A. Cheek, L. Visinelli, and HYZ (2025)

Earth crossing through different de Broglie patches

34

Suppressed oscillation behaviors

Distributions of mass-squared differences in different patches:

$$\frac{\Delta m_{ijD}^2}{\Delta m_{ijD}^2|_{\rm NFW}} \sim \chi^2(1), \text{ Rayleigh}$$
$$\sim 1 - \cos(k_\theta \theta)$$

Flavor oscillations in terms of distances are suppressed in a model-independent way!

A. Cheek, L. Visinelli, and HYZ (2025)

Summary

- Ultralight DM density on small scales
 - Soliton + NFW
 - Stochastic fluctuations
- Dynamic m_{ν} due to ultralight DM?
 - For $10^{-19} \lesssim m_{\phi} \ll 10^{-14} \text{eV}$
 - KamLAND disfavors "dark" mass by > 4σ
 - For $10^{-14} \text{eV} \ll m_{\phi} \ll 10 \text{eV}$

Stochastic fluctuations suppress neutrino oscillations

• Ultralight DM is unlikely to account for m_{ν}

